Additive Manufacturing (1year skill development course)

Semester I

Subject	Subject name Contac		ct Hours	Credits	Internal	External	Total
Code	Subject name	Theory	Practical	Creans	Marks	marks	Marks
CMEE3- 101	Communication Skills	8	-	1	25	25	50
CMEE3- 101P	Communication Skills Lab	-	24	1	25	50	75
CAMFS1- 101	Basics of Engineering Drawing	30	-	3	50	100	150
CAMFS1- 102	Basic Engineering Drawing Lab	-	96	3	50	100	150
CAMFS1- 103	Additive Manufacturing- I	30	-	3	50	100	150
CMEE3- 106P	Student Centred Activities	-	48	2	25		25
CMEE3- 105	Basic Workshop Practice	32	-	2	25	50	75
CMEE3- 105P	Basic Workshop Practice Lab	-	144	5	100	100	200
CMEE3- 107P	4 weeks Industrial training (during Vacations)	-		4		100	100
	Total	100	312	24	350	625	900

Semester II

Subject	Units	Conta	ct Hours	Credits	Internal	External	Total
Code	Units	Theory	Practical	Creans	Marks	marks	Marks
CMEE3-208	Basic Science	48	-	3	25	75	100
CAMFS1- 201	Auto CAD Lab	<u> </u>	144	5	100	100	200
CAMFS1- 202	Additive Manufacturing-II	30	1	3	100	100	200
CAMFS1- 203	Additive manufacturing Lab	-	144	5	100	100	200
CAMFS1- 204	Inspection & Quality Control	32	-	3	50	100	150
CAMFS1- 205	Inspection & Quality Control Lab	-	80	3	50	75	125
CMEE3- 106P	# Student Centred Activities (SCA)	-	48	2	25		25
CMEE3- 107P	4 weeks Industrial training (during Vacations)	-	-	4		100	100
	Total		416	28	500	650	1100

SCA will comprise of co-curricular activities like extension lectures on entrepreneurship, Industrial tour, environment, sports, hobby club, such as, photography, etc., seminars, declamation contest, educational field visits, NCC, NSS, cultural activities, etc.

+Industrial Training Before completion of the semester, the students will go for training in a relevant industry/field organization for a minimum period of 4 weeks and prepare a diary. The student will prepare a report at the end of training. This report will be evaluated by the concerned instructor in the presence of one industry representative from the relevant trade/field.

Total weeks per semester: 16, Total working days per week: 5, Total hours per day: 7, Total hours in a semester: 16x5x7 = 560 One credit is defined as one hour of lecture per week or two hours of practical per week in the program.

GUIDELINESFOR ASSESSMENT OFSTUDENT CENTRED ACTIVITIES (SCA)

The maximum marks for SCA should be25. The marks may be distributed as follows:

- i) 5 marks for general behavior and discipline (by Principal or HOD in consultation with the instructor(s)/trainers)
- ii) 5 marks for attendance as per following (by the instructors/ trainers of the department)
 - a) Up to75% Nil
 - b) 75% to 80% 02marks
 - c) 80% to 85% 03marks
 - d) Above 85% 05marks
- iii) 15marks maximum for sports/NCC/NSS/Cultural/Co-curricular activities as per following: (by In-charge of Sports/ Cultural/NCC/NSS/Co-curricular activities)
- 15marks for National level participation or inter-university competition
- 10 marks participation any two of the activities

05 marks - participation at the internal sports of the institute/college/university

Note: There should be no marks for attendance in the internal sessional of different subjects.

Salient features of the course

1	Sector	Industry 4.0/ Mechanical Engineering
2	Name of the Certificate Program	Additive manufacturing
3	Entry Qualification	Matriculation or equivalent NSQF level as
		prescribed by MRSPTU, Bathinda
4	Duration of Program	1 year
5	Intake	30
6	Pattern of Program	Semester Pattern
7	NSQF level	Level III
8	Ratio of Theory & Practice	20:80

UNIT – 1.1 Subject Code: CMEE3-101 **COMMUNICATION SKILLS**

LEARNING OUTCOMES:

After undergoing this unit, the students will be able to:

- Speak confidently.
- Overcome communication barriers.
- Write legibly and effectively.
- Listen in proper prospective.
- Read various genres adopting different reading techniques.

Respond to telephone calls effect	
Practical (24 Ho	· · · · · · · · · · · · · · · · · · ·
 Looking up words in a dictio (meaning and pronunciation) (2 how shows a self and peer introduction Self and peer introduction Greetings for different occasions 	Basics of Communication Process of communication Types of communication - formal and informal, oral and written, verbal and non-verbal Objectives of communication Essentials of communication Barriers to communication Barriers to communication Parts of speech Ours) Listening Meaning and process of listening Importance of listening
(1 h	 our) Methods to improve listening skills Speaking Importance Methods to improve speaking Manners and etiquettes (2 hours)
• Newspaper reading (1 h	 Reading Meaning Techniques of reading: skimming, scanning, intensive and extensivereading (1 hour)
 Vocabulary enrichment and gramma exercises Exercises on sentence framing accura (6 ho 	 One-word substitution Commonly used words which are

•	Reading aloud articles and essays on current and social issues	
•	Comprehension of short paragraph	
	(5 hours)	
•	Write a short technical report	
٠	Letter writing	
	(3 hours)	
٠	Participate in oral discussion	
•	Respond to telephonic calls effectively	
•	Mock interview	
	(6 hours)	

- Assignments and quiz/class tests
- Mid-term and end-term written tests
- Laboratory and practical work
- Viva-voce

Unit: 1.2	
Subject Code: CAMFS1-101	
BASICS OF ENGINEERING DRAWING	
LEARNING OUTCOMES:	
After undergoing this unit, students will be able to:	
• Utilize various types of lines used in engineering drawing.	
• Draw free hand sketches of various kinds of objects.	
• Read and apply different dimensioning methods on drawing of objects.	
• Read technical drawings for cost estimation and manufacturing/fabricati	on purpose
Introduction: Applications of various types of lines in engineering drawing,	3 hrs
Technical lettering,	
Dimensioning, method of dimensioning, types of dimensioning, and rules of	
dimensioning.	
Geometrical construction: Construction of regular pentagon, and hexagon,	6 hrs
inscribe polygon	
(triangle, square, pentagon, hexagon) in a circle, circumscribe polygon	
(triangle, square, pentagon and hexagon) to a circle.	
Orthographic projections: Features of first angle projection, Features of	5 hrs
third angle	
projections, symbols, General preparation for multi-view drawings,	
conversion of pictorial view /isometric view into orthographic view	
Isometric Projections: Terminology, isometric scale, isometric projection	5 hrs
and isometric view,	5 111 5
Methods of drawing an isometric view of right solids, truncated solids	
composite solids, four centre method for drawing approximate ellipse and	
elliptical arcs, Conversion of orthographic views into isometric views.	
Projections of solids : Classification of regular solids, Polyhedron, Prism,	6 hrs
Pyramid, solid of	
revolution, Frustum of pyramid and cone and orientation of solid.	
Development of surfaces: development of prism, cylinders, cones and	5 hrs
pyramids.	
Means of Assessment	

- Assignments and quiz/class tests
- Mid-term and end-term written tests
- Viva-voce

Unit: 1.3 Subject Code: CAMFS1-102 BASICS OF ENGINEERING DRAWING LAB

LEARNING OUTCOMES: After undergoing this unit, students will be able to:

- Drawing practice for various types of lines used in engineering drawing.
- Draw free hand sketches of various kinds of objects.

• Apply different dimensioning methods on drawing of objects.	
Practical demonstration with the help of blue prints/computer prints.	6 hrs
Drawing board, T-square, mini drafter, set squares, protractor, drawing	9 hrs
instrument box, pencils of different grades, erasing shield • Learn methods of	
folding of blue print/drawing prints as per BIS SP: 16-2003 • Size of drawing	
sheets and designation of sheets. • Preparation of A3/A2 sheet for preparing	
drawings.	
Practice construction of different types of lines (horizontal and vertical)	6 hrs
Construction of triangle, rectangle, rhombus, parallelogram circle quadrilateral and ellipse.	3hrs
Practice writing alphabets and numerals in capital/lower case as per BIS: 9609 in vertical and inclined style:	6 hrs
Practice construction of elements dimensioning with the help of a view of an	6 hrs
object. • Practice dimensioning of a diameter, radius, angles, holes, chamfers,	
undercut, functional dimensions, nonfunctional dimensions.	
Practice of free hand sketch of an object in orthographic and isometric views.	6 hrs
Free hand sketches of orthographic views of an object in first angle and third	6 hrs
angle projections.	
Construction of different points existing in first/second/third and fourth	6 hrs
quadrants. • Identification of the position of points w.r.t. their projection	
drawings.	
Practice the construction of plan and elevation of lines w.r.t. their different	9 hrs
positions such as a line parallel to both V.P. and H.P, line perpendicular to	
V.P. and parallel to H.P., line perpendicular to H.P. and parallel to V.P., line	
parallel to H.P. and inclined to V.P., line parallel to V.P. and inclined to H.P.	
Practice construction of cone, cylinder, pentagonal prism and hexagonal pyramid.	6hr
Practice on the sheets showing all conventions as graphical symbols for	9 hrs
materials and equipment/instruments/engineering components cast iron,	
aluminum audits alloys, steel, brass, bronze, copper etc. concrete, glass,	
plastic/rubber/insulating material/pack material (Marble, Slate, Porcelain and	
stone wares) Liquids, Woods	
Practice on the sheets showing the different welding joints	6 hrs
Practice the construction of views of the riveted joints.	6 hrs
Practice of sign convention of D.C. A.C. Positive, Negative, Single Phase, Three Phase, AC/DC, 3- Phase, Neutral line.	6 hrs
Means of Assessment	1

- Assignments and quiz/class tests
- Mid-term and end-term written tests
- Viva-voce
- Sketching
- Drawing

Unit: 1.4 Subject Code: CAMFS1-103 ADDITIVE MANUFACTURING- I

LEARNING OUTCOMES:

After undergoing this unit, students will be able to:

- Understand various types of manufacturing processes and industry 4.0.
- Understand the working of various types of additive manufacturing processes.
- Understand various slicing parameters required for 3D printing.

• Onderstand various sheing parameters required for 5D printing.			
Introduction to additive manufacturing, flexible manufacturing system,	4 hrs		
Manufacturing processes, Industry 4.0	6 hrs		
Classification of various additive manufacturing techniques such as fused	10 hrs		
deposition modeling (FDM), laminated object manufacturing (LOM),			
selective laser sintering (SLS), stereolithography (SLA), direct metal printing			
etc.			
Fused deposition modelling, working principle, process parameters, types of	10 hrs		
materials used in FDM, types of 3D printers.			

- Assignments and quiz/class tests
- Mid-term and end-term written tests
- Viva-voce

UNIT – 1.5 Subject Code: CMEE3-105 BASIC WORKSHOP PRACTICE

LEARNING OUTCOMES:

After undergoing this unit, the students will be able to:

- Observe general workshop safety precautions
- Identify, select and use appropriate hand tools and carry out simple fitting operations like filing, chipping, hacksawing, threading, taping, grinding, drilling
- Identify, select and use appropriate tools, equipment to carry out operations like cutting, bending, flaring, swaging, pinching, brazing of copper tubes
- Identify, select and use appropriate hand tools and carry out simple sheet metal operations like marking, cutting, bending, folding
- Identify, select and use appropriate electrical tools and instruments, measure electrical parameters (like voltage, current, resistance, earth resistance, insulation, continuity)
- Identify electronic components like transistors, resistors, capacitors, diodes, S.C.R, U.J.T, ICs used in refrigerators and air conditioners.
- Identify, select and use appropriate tools, equipment, consumables and carry out simple gas welding operations.
- Carry out brazing of copper-to-copper, copper to MS
- Identify, select and use appropriate hand tools and carry out simple carpentry operations like planing, sawing, chiselling and drilling.

Practical	(144 Hours)	Theory (32 Hours)
Safety		Safety
Familiarization with workshop	machinery.	General safety precautions and first aids
Safety precautions.		
	(12 hours)	(4 hours)
Fitting		Fitting
Familiarization with tools, eq	uipment and	Study different types of tools, equipment and
measuring instruments used	in fitting.	measuring instruments used in fitting, their
Practice marking / layou	-	specifications, functions, working and uses;
specifications, filing, chipping,		care and maintenance.
threading, taping, grinding, drill	0	(4 hours)
	(20 hours)	Study of copper tubing, their sizes,
Practice working on soft copper tubing like,		specifications and different operations as
cutting, bending, flaring, swagin	01	related to refrigeration and air conditioning.
	(20 hours)	(4 hours)
Sheet Metal Working		Sheet Metal Working
Familiarization with tools,	measuring	Study different types of tools, equipment and
instruments used in sheet me	etal. Practice	measuring instruments used in sheet metal
marking / layout / develop	-	working, their specifications, functions,
specifications, cutting, bending,	-	working and uses; care and maintenance.
	(20 hours)	(4 hours)
Electrical		Electrical
Familiarization with electrical to	· •	Study electrical terms such as AC and DC
wire joint, verification of	Ohm's law,	supply, voltage, current, resistance, power,

Identification of phase and neutral of AC supply, measurement of voltage, current, resistance, power, frequency and energy consumed in an electrical circuit, selection of wires and cables as per load, measurement of earth resistance. Insulation and continuity test, detection of current leakage, short circuit.	Energy, frequency etc. Series and parallel circuits, Concept of single phase and three phase supply, Safety precautions to be observed while working on electricity, conductors and insulators. Study of measuring Instruments such as voltmeter, ammeter, ohm meter, watt meter, energy meter and frequency meter. Earthing and its
(20 hours)	importance, insulation and continuity test (4 hours)
Electronics	Electronics
Identification of electronic components, tools and instruments, colour coding of resistors, identification of transistors, resistors, capacitors, diodes, S.C.R, U.J.T, I.Cs. used in refrigeration and air conditioning, working of remote control. (20 hours)	Introduction to electronics, basic principles of semiconductors, application of diodes, rectification, Zener diode as voltage regulator – transistors parameters- CB, CE, CC, configuration, amplification. SCR. (4 hours)
Welding and Brazing	Welding and Brazing
Familiarization with tools, equipment, instruments and consumables for gaswelding and brazing, practice simple gas welded joints, brazing copper-to-copper, copper to MS. (20 hours)	Introduction to gas welding, equipment (like cylinders, regulators, blowpipes, nozzles etc.) used, their specifications, working, functions, types of flames, consumablesused, safety precautions, care and maintenance, different welded joints. Introduction to brazing, equipment and consumables used, importance and use of brazing in refrigeration and air conditioning (4 hours)
Carpentry	Carpentry
Familiarization with simple carpentry tools	Introduction to simple carpentry tools, their
and practice operations like planning, sawing, chiselling and drilling.	types, specifications, working, functions, safety precautions, care and maintenance.
(12 hours)	(4 hours)

- Assignments and quiz/class tests
- Mid-term and end-term written tests
- Laboratory and practical work
- Report writing
- Viva-voce
- Workshop job

Subject Code: CMEE3-107P INDUSTRIAL TRAINING – I (4 Weeks)

The purpose of industrial training is to:

- Develop understanding regarding the size and scale of operations and nature of industrial/field work in which students are going to play their role after completing the courses of study.
- Develop confidence amongst the students through firsthand experience to enable them to use and apply institute based knowledge and skills to perform field activities
- Develop special skills and abilities like interpersonal skills, communication skills, attitudes and values.

It is needless to emphasize further the importance of Industrial Training of students during their one-year certificate programme. It is industrial training, which provides an opportunity to students to experience the environment and culture of world of work. It prepares students for their future role as skilled person in the world of work and enables them to integrate theory with practice.

An external assessment of 100 marks have been provided in the study and evaluation scheme of 1st Semester. Evaluation of professional industrial training report through viva-voce/presentation aims at assessing students understanding of materials, industrial process, practices in industry/field organization and their ability to engage in activities related to problem solving in industrial setup as well as understanding of application of knowledge and skills learnt in real life situations.

The instructor along with one industrial representative from the concerned trade will conduct performance assessment of students. The components of evaluation will include the following:

- a) Punctuality and regularity 20%
- b) Industrial training report
- c) Presentation and viva-voce

50% 30%

UNIT – 2.1 Subject Code: CMEE3-208 BASIC SCIENCES

LEARNING OUTCOMES:

After undergoing this unit, the students will be able to:

- Apply the basic principles of maths in solving the basic problems of the trade.
- Apply the basic principles of physics in solving the basic problems of the trade.

Apply the basic principles of physics Practical	Theory (48 Hours)
	Mathematics • Basic Algebra – algebraic formula. Simultaneous equation – quadratic equations (4 hours) • Simultaneous linear equation in two variables (3 hours) • Arithmetic and geometric progression, sum of n-terms, simple calculations. (3 hours) • Mensuration – Find the area of regular objects like triangle, rectangle, square and circle; volumes of cube, cuboid, sphere cylinder (6 hours) • Trigonometry - Concept of angle, measurement of angle in degrees, grades and radians and their conversions, T-Ratios of Allied angles • Co-ordinate Geometry - Cartesian and polar coordinates, conversion from cartesian to polar coordinates (2 hrs) • Concept of Differentiation and Integration • Physics
	 FPS, CGS, SI units, dimensions and conversions (2 hours) Force, speed, velocity and acceleration – Definition, units and simple problems (3 hours) Stress and strain, modulus of elasticity (2 hours) Heat and temperature, its units and specific heat of solids, liquids and gases (4 hours) Electricity and its uses, basic electricity

terms and their units, D.C. and A.C., positive and negative terminals, use of switches and fuses, conductors and
insulators
(5 hours)
• Work, Power and Energy-Definition, units and simple problems
(4 hours)
• Concept of force, Inertia, Newton's First
law of motion; momentum and Newton's
second law of motion; Impulse;
Newton's third law of motion.
(2 hrs)
Friction and Lubrication
(1 hour)
• Law of conservation of energy
(1 hour)

- Assignments and quiz/class tests
- Mid-term and end-term written tests
- Model/prototype making

Unit: 2.2 Subject Code: CAMFS1-201 AUTOCAD LAB

LEARNING OUTCOMES:

After undergoing this unit, students will be able to:

- Drawing practice for various types of AutoCAD toolbars.
- Draw sketches of various kinds of objects.
- Apply different dimensioning methods on drawing of objects.

Listing the computer technologies that impact on graphical communication,	50 hrs
Demonstrating knowledge of the theory of CAD software such as: The Menu	
System, Toolbars (Standard, Object Properties, Draw, Modify and	
Dimension), Drawing Area (Background, Crosshairs, Coordinate System),	
Dialog boxes windows, Shortcut menus (Button Bars), The Command Line	
(where applicable), The Status Bar, Different methods of zoom as used in	
CAD, Select and erase objects.; Isometric Views of lines, Planes, Simple and	
compound Solids	
Consisting of set up of the drawing page and the printer, including scale	50 hrs
settings, Setting up of units and drawing limits; ISO and ANSI standards for	
coordinate dimensioning and tolerance; Orthographic constraints, Snap to	
objects manually and automatically; Producing drawings by using various	
coordinate input entry methods to draw straight lines, Applying various ways	
of drawing circles	
<u>0</u>	44 hrs
Applying dimensions to objects, applying annotations to drawings; Setting up	44 mrs
and use of Layers, layers to create drawings, Create, edit and use customized	
layers; Changing line lengths through modifying existing lines	
(extend/lengthen); Printing documents to paper using the print command;	
orthographic projection techniques	

- Assignments and quiz/class tests
- Mid-term and end-term written tests
- Viva-voce
- Sketching
- Drawing

Unit: 2.3 Subject Code: CAMFS1-202 ADDITIVE MANUFACTURING- II

LEARNING OUTCOMES:

After undergoing this unit, students will be able to:

- Understand various types of engineering materials.
- Understand various types of material testing methods.
- Understand the use of various types of slicing parameters.

 Understand various Post processing techniques used for 3D printed parts 	•
Introduction to materials, classification of materials, material properties,	4 hrs
selection process of materials.	
	<i>c</i> 1

Material testing methods such as hardness, impact strength, tensile strength,	6 hrs
flexural strength.	
Slicing software, slicing parameters such as material selection, nozzle size,	10 hrs
pattern, infill density, raster angle, layer width. Layer thickness etc.	
Surface roughness techniques, Post processing techniques in additive	10 hrs
manufacturing, process parameters.	

- Assignments and quiz/class tests
- Mid-term and end-term written tests
- Viva-voce

Unit: 2.4 Subject Code: CAMFS1-203 ADDITIVE MANUFACTURING LAB

LEARNING OUTCOMES:

After undergoing this unit, students will be able to:

- Understand and select various types of slicing parameters.
- Set FDM printer.
- Print 3D parts.

	50.1
Listing the computer technologies that impact on 3D printing, Transfer of	50 hrs
CAD file into .stl file formet. Demonstrating knowledge of the theory of	
slicing software and slicing parameters such as: material selection, nozzle	
size, pattern, infill density, raster angle, layer width. Layer thickness etc.	
FDM printer setting, bed levelling, nozzle setting, feedstock filament loading/	50 hrs
unloading	
3D printing of parts, post processing of printed parts.	44 hrs

- Assignments and quiz/class tests
- Mid-term and end-term written tests
- Viva-voce
- 3D printing

Unit: 2.5 Subject Code: CAMFS1-204 INSPECTION AND QUALITY CONTROL

LEARNING OUTCOMES:

After undergoing this unit, students will be able to:

- Understand metrology and standard of measurement.
- Understand the working of various types of inspection instruments.
- Understand the concept of surface roughness and its measurement.

Define Metrology, Inspection, Accuracy and Precision, Standards of measurements.	4 hrs
Vernier calliper, micrometre, height gauge, filler gauges, sine bars, Screw	6 hrs
Thread Measurement: Errors in threads, screw thread gauges, measurement of	
element of the external and internal threads, thread caliper gauges.	
Metrology of Surface finish: Surface Metrology Concepts and terminology,	6 hrs
Analysis of surface traces, Specification of surface Texture characteristics,	
and Method of measuring surface finish: Stylus system of measurement,	
Stylus probe instruments, methods for measuring surface roughness	
Miscellaneous Metrology: Precision Instrumentation based on Laser	8 hrs
Principals, Coordinate measuring machines: Structure, Modes of Operation,	
Probe, Operation and applications.	
Optical Measuring Techniques: Tool Maker's Microscope, Profile Projector,	8 hrs
Optical Square. Optical Interference and 8. Interferometry, Optoelectronic	
measurements.	

- Assignments and quiz/class tests
- Mid-term and end-term written tests
- Viva-voce

Unit: 2.6 Subject Code: CAMFS1-205 INSPECTION AND QUALITY CONTROL LAB

LEARNING OUTCOMES:

After undergoing this unit, students will be able to:

- Use the inspection instruments.
- Understand the selection of instrument for particular job.
- Carry out the maintenance of the instruments.

Use of various inspection instruments such as vernier calliper, micro-meter,	80 hrs
surface roughness tester, height gauge, tool maker microscope, optical	
microscope, sine bars, filler gauges, thread gauges and Surface plate.	
Maintenance of instruments.	

- Assignments and quiz/class tests
- Mid-term and end-term written tests
- Viva-voce